Atharva Naik

Education

Ph.D. Language Technologies, Carnegie Mellon University.
Advisors: Carolyn Rose, Daniel Fried

M.S. Language Technologies, Carnegie Mellon University
GPA: 4.08/4

B.Tech. Computer Science, Indian Institute of Technology, Kharagpur
GPA: 9.66/10

Research

Statement: I want to build **Large Language Model (LLM) agents** that can **collaborate** with humans for software engineering while facilitating **on-the-job learning** about code efficiency, maintainability, and security. I want to help programming students and software engineers to be more productive and become better programmers at the same time.

Interests: Natural Language Processing (NLP), Deep Learning for Code (DL₄C), Large Language Models of Code, LLM Agents, Interactive and Repository Level Code Generation, Editing, Translation and Review.

Experience

2021

2022 – 2024 Research Assistant, Carnegie Mellon University Automated and Interactive Code Intelligence — Code Generation, Translation, and Review for assisting Software Engineers and Programming Students.

Research Intern, Technische Universität Darmstadt Neural Network Arcthitecture for Faithful Interpretability in NLP.

- **Research Intern, Adobe** RL agent for Creative Human-Human Collaboration.
- **Research Intern, University of Alberta** Neuro-Symbolic Fuzzy Logic-based Reasoning for Explainable Natural Language Inference.

2019-2020 Student Researcher, Autonomous Ground Vehicle (AGV) Group Path Planning and Localization for Autonomous Driving.

Publications

Conference Publications

- **A. Naik**, J. R. Yin, A. Kamath, *et al.*, "Generating situated reflection triggers about alternative solution paths: A case study of generative ai for computer-supported collaborative learning," in *AIED*, 2024.
- A. Rao, S. Vashistha, A. Naik, S. Aditya, and M. Choudhury, "Tricking LLMs into Disobedience: Understanding, Analyzing, and Preventing Jailbreaks," in *LREC-COLING*, 2024.
- **A. Naik**, S. Das, J. Vedurada, and S. Aditya, "Sync: A structurally guided hard negative curriculum for generalizable neural code search," in *AACL*, 2023.
- Z. Wu, Z. X. Zhang, A. Naik, Z. Mei, M. Firdaus, and L. Mou, "Weakly Supervised Explainable Phrasal Reasoning with Neural Fuzzy Logic," in *ICLR*, 2023.
- Y. Xie, **A. Naik**, D. Fried, and C. Rose, "CMTrans: Improving Code Translation with Comparable Corpora and Multiple References," in *EMNLP Findings*, 2023.

- S. Bv, J. A. Patel, A. Naik, Y. Butala, S. Sharma, and N. Chhaya, "Towards Enabling Synchronous Digital Creative Collaboration: Codifying Conflicts in Co-Coloring," in *CHI Extended Abstracts*, 2022.
- B. Santra, S. Roychowdhury, A. Mandal, *et al.*, "Representation Learning for Conversational Data using Discourse Mutual Information Maximization," in *NAACL*, 2022.
- Y. Wang, S. Mishra, P. Alipoormolabashi, *et al.*, "Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks," in *EMNLP*, 2022.
- 9 R. Mukherjee, A. Naik, S. Poddar, S. Dasgupta, and N. Ganguly, "Understanding the Role of Affect Dimensions in Detecting Emotions from Tweets: A Multi-task Approach," in *SIGIR*, 2021.

Preprints

- A. Naik, M. Alenius, D. Fried, and C. Rose, "Crscore: Grounding automated evaluation of code review comments in code claims and smells," 2024. arXiv: 2409.19801 [cs.SE]. ♥ URL: https://arxiv.org/abs/2409.19801.
- **A. Naik**, K. Zhang, N. Robinson, *et al.*, "Can large language models code like a linguist?: A case study in low resource sound law induction," 2024. arXiv: 2406.12725 [cs.CL].

Under Review

A. Naik, J. R. Yin, A. Kamath, et al., Generative ai enabled situated reflection triggers for catalyzing solution path exploration, 2024.

Projects

Best Practice Recommendation Agent for Python Code (Ongoing)

- Developing an agent for the recently introduced task of best practice recommendation for code review conditioned on Python version to minimize outdated best practices.
- Formulating the task as knowledge conflict mitigation to detect best practice violations for various Python versions faithfully.
- Creation of a benchmark and parameter-efficient inference and fine-tuning methods for best practice recommendation with faithful attribution of knowledge sources. (Planned)

Reference Free Evaluation of Automated Code Review Comment Generation

- We create CRScore, the first reference-free automated metric for code review comment generation.
- CRScore leverages Large Language Models of Code and static analysis tools to analyze code changes and identify relevant **maintainability** issues like code smells to generate pseudo-references.
- Then it leverages sentence transformers and semantic similarity of the review sentences with the pseudo-references to compute the conciseness, comprehensiveness, & relevance of the review.
- Creation of a human-annotated code review quality dataset for comparing review quality metrics. CRScore exhibits the greatest correlation and sensitivity to human judgment (**0.95** Spearman rank correlation with human ranking of systems) compared to popular reference-based metrics like BLEU.

Skills

Coding

Python (expert), C/C++, Bash (familiar), Javascript (novice)

Frameworks

PyTorch, HuggingFace, Fairseq, NLTK, spaCy, Tensorflow, FastAPI, Flask, Django, PyQt5, Jupyterlab, OpenCV, Git

Awards